Pluripotent stem cell-derived dendritic cells for immunotherapy.

نویسندگان

  • Satoru Senju
  • Yusuke Matsunaga
  • Satoshi Fukushima
  • Shinya Hirata
  • Hidetake Matsuyoshi
  • Yasuharu Nishimura
چکیده

Dendritic cell (DC) is regarded as a powerful means for anti-cancer immunotherapy. Clinical trials of cancer therapy with DC loaded with cancer antigens, such as tumor cell-lysates or HLA class I-binding antigenic peptides, have been conducted. Antigen-specific negative manipulation of the immune response by DC is a potential treatment for autoimmune diseases and also for control of allo-reactive immune responses in transplantation medicine. Currently, DC for clinical use are generated from peripheral blood monocytes of the patients. However, the number of monocytes obtained from the patients is limited and the potential of monocytes to differentiate into DC varies depending on the blood donor. Thus, the issue of limited cells is a serious obstacle for DC therapy. ES cells and iPS cells have pluripotency and unlimited propagation capacity and may be an ideal cell source for DC-therapy. Several groups, including us, have developed methods to generate DC from ES cells or iPS cells. This review introduces the studies on generation, characterization, and genetic modification of DC derived from ES cells or iPS cells.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Quick update from the Past to Current Status of Human Pluripotent Stem Cell-derived Hepatocyte culture systems

Pluripotent stem cells (PSCs) may be offered as an unlimited cell source for the hepatocyte generation. The generation of hepatocytes from stem cells in vitro would provide an alternative cell source for applications in drug discovery and cell transplantation. In this review, we discuss different approaches to generate pluripotent stem cell-derived hepatocytes, advantages, limitations for each ...

متن کامل

Spermatogonia stem cells: A new pluripotent source for repairment in regenerative medicine

Recently new reports have proved the pluripotency of spermatogonial stem cells (SSCs) derived from male gonad. This pluripotent stem cells resembled Embryonic stem cells recognized as Embryonic Stem like cells (ES like cells). ES like cells forms sharp edge colonies that are immunopositive to pluripotency markers and have differentiation capacity to Ectodermal, Mesodermal and Endodermal layers....

متن کامل

Pluripotent stem cells as source of dendritic cells for immune therapy.

Dendritic cells (DC) are the most potent antigen-presenting cells. In vivo transfer of antigen-bearing DC has proven efficient in priming T cell responses specific to the antigen. DC-based cellular vaccination is now regarded as a powerful means for immunotherapy, especially for anti-cancer immunotherapy. Clinical trials of therapy with DC pulsed with peptide antigens or genetically modified to...

متن کامل

Alpha-Tocopherol increases the proliferation of induced pluripotent stem cell derived neural progenitor cells

In addition to its antioxidant effect, Vitamin E or α–tocopherol is suggested to enhance remyelination in the animal model of non-inflammatory demyelination. In this study, the possible proliferative effect of vitamin E on human- induced pluripotent stem cell-derived neural progenitors (hiPS-NPs) and the underlying mechanisms were investigated in vitro. NPs were induced from iPS cells via 3 ste...

متن کامل

Fingolimod Enhances Oligodendrocyte Differentiation of Transplanted Human Induced Pluripotent Stem Cell-Derived Neural Progenitors

Multiple sclerosis (MS) is an autoimmune disease which affects myelin in the central nervous system (CNS) and leads to serious disability. Currently available treatments for MS mainly suppress the immune system. Regenerative medicine-based approaches attempt to increase myelin repair by targeting endogenous progenitors or transplanting stem cells or their derivatives. Fingolimod exerts anti-inf...

متن کامل

Dendritic Cell Maturation with CpG for Tumor Immunotherapy

Background: Bacterial DNA has immunostimulatory effects on different types of immune cells such as dendritic cells (DCs). Application of DCs as a cellular adjuvant represents a promising approach in the immunotherapy of infectious disease and cancers. Objectives: To investigate the effect of tumor antigen pulsed DCs in the presence of CpG-1826 in treatment of a murine model of cancer. Methods: ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Frontiers in bioscience

دوره 2  شماره 

صفحات  -

تاریخ انتشار 2010